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1. Preliminary Results

Before presenting the techniques of optimal control, we review two mathematical
results: L’Hopital’s rule and Leibniz’s rule. These results are used in section 6 for the
derivations of some of the results.

1.1. L’Hopital’s rule

L’Hopital’s rule states that if

lim
x→x0

f (x) = lim
x→x0

g(x) = 0,

then

lim
x→x0

f (x)
g(x)

= lim
x→x0

f ′(x)
g′(x)

.

1.2. Leibniz’s rule

Leibniz’s rule states that if

I(z) ≡

∫ b(z)

a(z)
f (x, z) dx

where x is the integration variable, z is a parameter and f (x, z) is assumed to have a
continuous derivative ∂ f (x, z)/∂z in the interval

[
a(z), b(z)

]
, then the effect of change

in z on the integral is given by

dI
dz
(z) =

∫ b(z)

a(z)

∂ f
∂z
(x, z)dx +

db
dz
(z) · f (b(z), z) – da

dz
(z) · f (a(z), z).
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2. Consumption-Saving Problem

This section considers the sameconsumption-savingproblemas in thenotes ondynamic
programming. The only difference is that the problem is now set in continuous time.

2.1. Description of the Problem

Taking initial wealth a0 as given, the problem is to choose the consumption path{
c(t)

}
t≥0 to maximize the lifetime utility∫ ∞

0
e–ρ·t · u(c(t))dt,(1)

subject to the law of motion

(2) ȧ(t) = r · a(t) – c(t).

The parameter r > 0 is the constant interest rate at which wealth is invested. The
parameter ρ > 0 is the discount factor. The notation ȧ denotes the derivative of wealth a
with respect to time t:

ȧ(t) ≡
∂a(t)
∂t

.

2.2. Optimal-Control Approach

To solve this problem, it is inconvenient to use the Lagrangian technique or dynamic
programming technique because they are designed for discrete-time optimization prob-
lems. Instead, we use a technique called optimal control. We will see in section 6 that
optimal control is related both to the Lagrangian technique and the dynamic program-
ming technique. But optimal control is designed for continuous-time optimization
problems.

There are two ways to apply the optimal-control approach: one by forming a present-
value Hamiltonian, the other by forming a current-value Hamiltonian. These two ways
are roughly equivalent, but using the current-value Hamiltonian is usually simpler.

2



3. Solution with Present-Value Hamiltonian

We start by solving the consumption-saving problem with the present-value Hamilto-
nian.

3.1. State and Control Variables

First, we identify the state variables and control variables. A control variable can be
adjusted at any time t whereas the evolution of a state variable follows a law of motion
such as (2). Here, the control variable is consumption c(t) and the state variable is wealth
a(t).

3.2. Present-Value Hamiltonian

Second, we write down the present-value Hamiltonian

H(t) = e–ρ·t · u(c(t)) + λ(t) · (r · a(t) – c(t)) .

To form the Hamiltonian, we introduce a new variable λ(t), which we call the costate
variable associated with the state variable a(t). In general, we introduce as many costate
variables as there are state variables. As a consequence, we introduce as many costate
variables as there are laws of motion, because each state variable is associated with a
law of motion.

The costate variable is analogous to a Lagrangemultiplier, except that it is associated
to a law of motion instead of a static constraint. But just like a Lagrange multiplier,
the costate variable measures the value frommarginally relaxing the constraint at the
optimum.

3.3. Optimality Conditions

Nextwewrite down the twooptimality conditions,which are derived from theMaximum
Principle:

∂H(t)
∂c(t)

=0(3)

∂H(t)
∂a(t)

= – λ̇(t).(4)
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The optimality conditions can be rewritten as

0 = e–ρ·t · u′(c(t)) – λ(t)(5)

–λ̇(t) = λ(t) · r.(6)

3.4. Transversality Condition

Then we impose a transversality condition:

(7) lim
t→+∞

λ(t) · a(t) = 0.

The transversality condition describes what must be satisfied at the end of the time
horizon at the optimum. Here it says that at the optimum, at the end of time, either
there is no wealth left (a(t) = 0) or wealth has no value (λ(t) · a(t) = 0).1 This clearly has
to be the case at the optimum: if there was some wealth left and wealth had value, then
all the wealth that is left over should be consumed. The idea behind the transversality
condition is that if there is any flexibility at the end of time, then the marginal benefit
from exploiting that flexibility must be zero at the optimum.

3.5. Euler Equation

We solve explicitly for the optimal consumption path by eliminating the costate variable
λ(t) using (5) and (6).

To eliminate λ(t), we first take log of (5):

–ρ · t + ln
(
u′(c(t))

)
= ln(λ(t)).

We then take time derivatives in this equation:

ρ +

[
–u

′′
(c(t)) · c(t)
u′(c(t))

]
·
[
ċ(t)
c(t)

]
= –

λ̇(t)
λ(t)

.

Equation (6) can be rewritten as

–
λ̇(t)
λ(t)

= r.

1Recall that the costate variable λ(t) measures the marginal value of wealth at the optimum.
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Combining these two equations, we obtain the Euler equation for optimal consumption:

(8)
ċ(t)
c(t)

·

[
–u

′′
(c(t)) · c(t)
u′(c(t))

]
= r – ρ.

The term
–u

′′
(c(t)) · c(t)
u′(c(t))

measures relative risk aversion. The coefficient of relative risk aversion also corresponds
to the inverse of the intertemporal elasticity of substitution.

3.6. CRRA Utility

Consider the following utility function:

u(c) =
c1–γ – 1
1 – γ

.

This utility function is know as Constant Relative Risk Aversion (CRRA ) utility. It is
characterized by a constant coefficient of relative risk aversion γ as

–u
′′
(c) · c
u′(c)

= γ.

With CRRA utility, the Euler equation simplifies to

ċ(t)
c(t)

=
r – ρ
γ

.
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4. Solution with Current-Value Hamiltonian

Next we solve the consumption-saving problem with a current-value Hamiltonian.

4.1. Current-Value Hamiltonian

The present-value HamiltonianH depends on t because of the discounting e–ρ·t, which
might create some difficulties in deriving and analyzing solutions to the problem. Mul-
tiplyingH by eρ·t addresses this problem.

We denote the resulting HamiltonianH∗ as current-value Hamiltonian. The current-
value Hamiltonian is given by

H∗(t) ≡ eρ·t ·H(t) = u(c(t)) + eρ·t · λ(t) · (r · a(t) – c(t)) .

We define a new costate variable q(t) as

q(t) ≡ eρ·t · λ(t).

The current-value Hamiltonian becomes

H∗(t) = u(c(t)) + q(t) · (r · a(t) – c(t)) .

This is the expression of the current-value Hamiltonian that we use in practice.

4.2. Optimality Conditions

The optimality conditions are slightly different. The optimality conditions become

∂H∗(t)
∂c(t)

=0

∂H(t)∗

∂a(t)
=ρ · q(t) – q̇(t).

Compared to the optimality conditions (3) and (4) with the present-value Hamilto-
nian, there is an extra term +ρ · q(t) in the second condition. The extra term arises
because the costate variable q(t) is defined differently form the costate variable λ(t) that
we used in the present-value Hamiltonian.
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The optimality conditions can be rewritten as

0 = u′(c(t)) – q(t)(9)

ρ · q(t) – q̇(t) = q(t) · r.(10)

4.3. Transversality Condition

The transversality condition becomes

lim
t→+∞

e–ρ·t · q(t) · a(t) = 0.

Compared to the transversality condition (7) with the present-value Hamiltonian, there
is an extra factor e–ρ·t in this condition. The extra factor arises because the costate vari-
able q(t) is defined differently from the costate variable λ(t) that we used in the present-
value Hamiltonian. But the interpretation of the transversality condition remains the
same: at the optimum, at the end of time, any leftover wealthmust be consumed, except
if the present-discounted marginal value of wealth is zero at the end of time.

4.4. Euler Equation

By combining equations (9) and (10), we obtain exactly the same condition (8) as with
the present-value Hamiltonian. We take the log of equation (9) to obtain

ln
(
u′(c(t))

)
= ln(q(t)).

We then take time derivatives in this equation:[
–u

′′
(c(t)) · c(t)
u′(c(t))

]
·
[
ċ(t)
c(t)

]
= –

q̇(t)
q(t)

.

Equation (10) can be rewritten

–
q̇(t)
q(t)

= r – ρ.
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Combining these two equations, we obtain the same Euler equation for optimal con-
sumption as the one we obtained with the present-value Hamiltonian:

ċ(t)
c(t)

·

[
–u

′′
(c(t)) · c(t)
u′(c(t))

]
= r – ρ.

4.5. Comparison of the Two Solutions

The two approaches—the approach with the present-value Hamiltonian and the ap-
proach with the current-value Hamiltonian—are equivalent. They lead to the same
Euler equation. However, it is often more convenient to work with the current-value
Hamiltonian.
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5. Theory of Optimal Control

Optimal control can be used to solve any continuous-time optimization problem. This
section provides optimality conditions for a general optimization problem.

5.1. General Optimization Problem

The general problem is to choose
{
c(t)

}
t≥0 to maximize∫ ∞

0
e–ρ·t · u (a(t), c(t))(11)

given the constraint that for all t

ȧ(t) = g(a(t), c(t)),(12)

and taking a0 as given. The parameter ρ > 0 is the discount rate. The functions u and g
are concave and twice differentiable.

5.2. Present-Value Hamiltonian

An important result in optimal control theory is the Maximum Principle. It is due to
Pontryagin. In addition to the control and state variables, we introduce a costate variable
λ(t) associated with the state variable. The costate variable measures the shadow price
of the associated state variable. The costate variable enters the optimal control problem
through the present-value Hamiltonian, defined as

(13) H(t) = e–ρ·t · u(a(t), c(t)) + λ(t) · g(a(t), c(t)).

5.3. Present-Value Optimality Conditions

The Maximum Principle gives necessary conditions for optimality. There are three
conditions. The first two conditions are

∂H(t)
∂c(t)

= 0(14)

∂H(t)
∂a(t)

= –λ̇(t).(15)
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Condition (14) implies that the Hamiltonian must be maximized with respect to the
control variable at any point in time. Condition (15) says that the marginal change of
the Hamiltonian associated with a unit change of the state variable is equal to minus
the rate of change of the costate variable.

The optimal solution must also satisfy a third condition, which we call transversality
condition:

(16) lim
t→∞

λ(t) · a(t) = 0.

The transversality condition implies the product of costate and statemust be converging
to zero as time goes to infinity.

5.4. Current-Value Hamiltonian

We can reformulate the results from the Maximum Principle with the current-value
Hamiltonian which is often easier to manipulate. The current-value Hamiltonian is
defined as

H∗(t) = u (a(t), c(t)) + q(t) · g(a(t), c(t)),

where q(t) is the costate variable associated with the state variable a(t).

5.5. Current-Value Optimality Conditions

With the current-value Hamiltonian, the three necessary conditions (14), (15), and (16)
for optimality become

∂H∗(t)
∂c(t)

= 0

∂H∗(t)
∂a(t)

= ρ · q(t) – q̇(t)

lim
t→∞

e–ρ·t · q(t) · a(t) = 0.

10



6. Heuristic Derivation of the Maximum Principle

In this section, we provide an heuristic derivation of the necessary conditions for opti-
mality provided by theMaximum Principle. One way to derive the optimality conditions
(14) and (15) is to apply informally the results from dynamic programming. Formally,
many of the claims below are imprecise, but they will serve the purpose of providing
intuition for the Maximum Principle.

6.1. Value Function for the Discretized Optimization Problem

We begin by defining the value function of the problem, which the maximized value of
the objective function as a function of the state variable a(t) and time t:

V (a(t), t) = max
{c(s)}s≥t

∫ ∞

t
e–ρ·(s–t) · u (a(s), c(s)) ds,

where the maximization is subject for all s ≥ t to the law of motion of the state variable

(17) ȧ(s) = g (a(s), c(s)) .

6.2. Bellman Equation

Since the problem has a recursive structure, we can apply the Principle of Optimality
and write the value function as the solution to a Bellman equation:

V (a(t), t) = max
{c(s)}t≤s≤t+∆t

{∫ t+∆t

t
e–ρ·(s–t) · u (a(s), c(s)) ds + e–ρ·∆t · V (a(t + ∆t), t + ∆t)

}
,

where the maximization is subject for all t ≤ s ≤ t + ∆t to (17).
Subtract V (a(t), t) from both side and divide by ∆t:

0 = max
{c(s)}t≤s≤t+∆t

[∫ t+∆t
t e–ρ·(s–t) · u (a(s), c(s)) ds

∆t
+
e–ρ·∆t · V (a(t + ∆t), t + ∆t) – V (a(t), t)

∆t

]
,

(18)

where the maximization is subject for all t ≤ s ≤ t + ∆t to (17).
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6.3. Hamilton-Jacobi-Bellman Equation

We now take the limit of (18) as∆t → 0 to obtain the Hamilton-Jacobi-Bellman equation.

Limit of First Term. We start with the first term in the curly brackets. Since numerator
and denominator of the first term approach zero as ∆t → 0, we apply L’Hopital’s rule.
The derivative of the denominator with respect to ∆t is 1. We apply Leibniz’s rule to
determine the derivative with respect to ∆t of the integral in the numerator. Leibniz’s
rule tells us that the derivative of the integral with respect to ∆t is

e–ρ·∆t · u (a(t + ∆t), c(t + ∆t)) .

Therefore, the limit as ∆t → 0 for the first term in the bracket is

(19) u (a(t), c(t)) .

Limit of Second Term. Wemove on to the second term. Since

lim
∆t→0

e–ρ·∆t = 1

and
lim
∆t→0

V (a(t + ∆t), t + ∆t) = V (a(t), t) ,

both numerator and denominator approach zero as ∆t → 0. Therefore we apply
L’Hopital’s rule. The derivative of the denominator with respect to∆t is 1. The derivative
of the numerator with respect to ∆t is

– ρ · e–ρ·∆t · V (a(t + ∆t), t + ∆t) + e–ρ·∆t ·
∂V
∂a

(a(t + ∆t), t + ∆t) · ȧ(t + ∆t)

+ e–ρ·∆t · ∂V
∂t

(a(t + ∆t), t + ∆t) .

We have the following limits:

lim
∆t→0

ρ · e–ρ·∆t · V (a(t + ∆t), t + ∆t) = ρ · V (a(t), t)

lim
∆t→0

e–ρ·∆t · ∂V
∂t

(a(t + ∆t), t + ∆t) =
∂V
∂t

(a(t), t)

lim
∆t→0

e–ρ·∆t · ∂V
∂a

(a(t + ∆t), t + ∆t) · ȧ(t + ∆t) =
∂V
∂a

(a(t), t) · ȧ(t) =
∂V
∂a

(a(t), t) · g(a(t), c(t)),

12



where the last equality results from the law of motion (12) of state variable a(t).
Therefore, the limit as ∆t → 0 for the first term in the bracket is

(20) –ρ · V (a(t), t) +
∂V
∂a

(a(t), t) · g(a(t), c(t)) +
∂V
∂t

(a(t), t) .

Derivation of the Hamilton-Jacobi-Bellman Equation. Combining equations (18), (19),
and (20), we obtain a version of the Bellman equation for the continuous-time opti-
mization problem. This equation is called the Hamilton-Jacobi-Bellman equation. The
equation is

(21) ρV (a(t), t) = max
c(t)

[
u (a(t), c(t)) +

∂V
∂a(t)

(a(t), t) · g(a(t), c(t)) +
∂V
∂t

(a(t), t)
]
,

where a(t) is given. We define

λ(t) ≡ e–ρ·t · ∂V
∂a(t)

(a(t), t) .

We can rewrite the Hamilton-Jacobi-Bellman equation as

(22) ρV (a(t), t) = max
c(t)

[
u (a(t), c(t)) + eρ·t · λ(t) · g(a(t), c(t)) +

∂V
∂t

(a(t), t)
]
.

6.4. Derivation of the Optimality Conditions

Taking the first-order condition with respect to c(t) in the Hamilton-Jacobi-Bellman
equation (22) implies

∂u
∂c(t)

(a(t), c(t)) + eρ·t · λ(t) ·
∂g
∂c(t)

(a(t), c(t)) = 0.

Furthermore, the envelope theorem implies

ρ
∂V
∂a(t)

(a(t), t) =
∂u

∂a(t)
(a(t), c(t)) + eρ·t · λ(t) ·

∂g
∂a(t)

(a(t), c(t)) +
∂2V

∂t∂a(t)
(a(t), t) .

The last two equations become equivalent to optimality conditions (14) and (15). This
is the case because, using the definition of the present-value Hamiltonian, equation (14)
can be written

∂H(t)
∂c(t)

(a(t), c(t)) = 0
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and equation (15) can be written

∂u
∂a(t)

(a(t), c(t)) + eρ·t · λ(t) ·
∂g

∂a(t)
(a(t), c(t)) = –eρ·t ·

∂λ(t)
∂t

,

which implies
∂H(t)
∂a(t)

(a(t), c(t)) = –
∂λ(t)
∂t

.

Note that we consider that the Hamiltonian is a function of at, t, and λt, and we only
take the partial derivative with respect to at, thus keeping λt constant.
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7. Applications of the Hamilton-Jacobi-Bellman Equation

The Hamilton-Jacobi-Bellman equation (21) is an optimality condition that equates flow
costs with flow benefits. In practice, we write it down without going through all the
algebra relating to ∆t.

This equation is commonly used in macroeconomics. For instance, it is frequently
used in search-and-matching models of the labor market. In a search-and-matching
model, a vacant job costs c per unit time and becomes occupied according to a Poisson
process with arrival rate q. In the labor market, the occupied job yields net returns
p –w, where p is real output and w is the cost of labor. The job runs a risk λ of being
destroyed.

Let V be the value of the vacant job and J be the value of occupied job. Let r be the
discount factor. In steady state, the Hamilton-Jacobi-Bellman equations are

r · V = –c + q · (J – V ) ,

r · J = p – w + λ · (0 – J) = p – w – λ · J.

There is no maximization on the right-hand-side in this particular example. These
equations simply describe the relationship between the equilibrium values V , J, and w.
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